Этот результат показывает, что положительные и отрицательные заряды связаны с металлом с различной прочностью. Под действием света могут освобождаться только отрицательные заряды — электроны.
Если проделать опыт с незаряженной пластинкой, то заметного отклонения листков обычного электроскопа не наблюдается. Однако, применив достаточно чувствительный электроскоп, мы обнаружим, что на пластинке под действием света возникает небольшой положительный заряд, скоро достигающий своего предела. Нетрудно понять, почему зарядка пластинки под действием света приостанавливается. После того как некоторое число электронов покинет пластинку и она зарядится положительно, дальнейшее удаление электронов в окружающее пространство сделается невозможным, как было объяснено выше. В томе III явление фотоэффекта будет изучено подробнее. Пока же ограничимся упоминанием, что и этот способ зарядки тел представляет собой также разделение электронов и положительных зарядов, которые существовали в теле и до освещения.
§ 10. Закон Кулона. Для более глубокого понимания электрических явлений необходимо познакомиться с количественным законом взаимодействия электрических зарядов, т. е. выяснить, как зависит сила, действующая между заряженными телами, от зарядов на них и от расстояния между ними.
Взаимодействие заряженных тел выражается особенно просто, если их размеры весьма малы по сравнению с расстоянием между ними. Такие заряженные тела мы будем называть точечными зарядами. Приближенно точечные заряды можно получить на опыте, заряжая достаточно маленькие тела, например шарики.
Закон взаимодействия двух точечных зарядов был установлен на опыте в 1785 г. французским физиком Шарлем Кулоном (1736—1806). Устройство прибора, с которым Кулон произвел свои опыты, показано на рис. 19, а. На очень тонкой упругой нити 1 подвешен за середину легкий хорошо изолирующий стержень 2, имеющий на одном конце прово-
28
дящий шарик 3, а на другом диск 4, служащий противовесом и успокоителем. Верхний конец нити закреплен на вращающейся головке прибора, угол поворота которой можно точно измерять. Внутри прибора имеется второй, такой же шарик 5, укрепленный на изолирующей ножке 6. Указанные части заключены в большой стеклянный цилиндр, предохраняющий стержень от движения воздуха. На поверхности цилиндра нанесена шкала, позволяющая определить расстояние между шариками 3 и 5 при различных их положениях.
Головка прибора показана отдельно на рис. 19, б. В предварительных опытах точно определяется вращающий момент (см. том I), необходимый для закручивания нити на определенный угол. Зная длину стержня, можно вычислить и силу, приложенную к шарику 3, которая обусловливает такой же вращающий момент. далее 


Используются технологии uCoz